THE FOLLOWING INFORMATION IS PROVIDED TO ASSIST YOU IN PREPARING FOR THE PRACTICAL EXAMINATION. MORE DETAILED INSTRUCTIONS ARE INCLUDED IN THE CANDIDATE BOOKLET.

Examination References

- Brooks, C.W. Essentials for Ophthalmic Lens Finishing. Butterworth-Heinemann, 2003.
- Brooks, C.W., and Borish, I.M. System for Ophthalmic Dispensing. Butterworth-Heinemann, 2007.
- Z-80.1-2005 American. American National Standard for Ophthalmics Prescription Ophthalmic Lenses Requirements. New York: American National Standards Institute, 2005.
- Optical Laboratories Association, Progressive Identifier. 2009
- Stein, Slatt, Stein. The Ophthalmic Assistant, Mosby.

General Examination Information

- You are not permitted to make written notes of or to record in any way the content of an exam.
- Candidates are responsible for understanding and following all instructions.
- Sharing of equipment during the examination is prohibited.
- It is strongly suggested that you check the accuracy of your equipment prior to arriving at the test site. You are solely responsible for any malfunctions.
- Proctors are prohibited from answering questions regarding examination content.
- You *are* permitted to bring the following items into the examination room:

Sharpened No. 2 lead pencils with erasers (for recording examination answers)

Focimeter (Lensometer, Vertometer or Marco Lensmeter)

Lens clock

Calipers

Non-programmable calculator, handheld magnifier, small non-disruptive light source

Millimeter ruler Admission letter

Proper ID (driver's license, state ID card, passport, or military ID)

• The following items *are not* permitted in the examination room:

Purses, briefcases, portfolios, fanny packs, or backpacks

Cameras, tape recorders, or computers

Pagers, electronic transmitting devices or telephones

Any bound or loose-leaf reference material or notes

Food, drink, or tobacco products

- Candidates not bringing their own lensmeter will be provided a Marco Model 101.
- Candidates are responsible for the accuracy of all equipment used during the examination.
- Answers may be required in either plus (+) or minus (-) cylinder form.
- All powers must be identified to the nearest 0.12 Diopter.
- Candidates are encouraged to bring a hand-held magnifier and non-programmable calculator to the exam.

Test Tolerances

Type of Measurement	Tolerance
Spherical Power from 0.00 to 6.50 diopters	\pm 0.13 diopter
Spherical Power above 6.50 diopters	$\pm 2\%$
Cylinder Power from 0.00 to 2.00 diopters	± 0.13 diopter
Cylinder Power from 2.12 to 4.50 diopters	± 0.15 diopter
Cylinder Power above 4.50 diopters	$\pm 4\%$
Axis when cylinder is less than or equal to 0.250 diopter	±14 degrees
Axis when Cylinder Power is greater than 0.250 to 0.500 diopters	\pm 7 degrees
Axis when Cylinder Power is greater than 0.500 to 0.750 diopters	\pm 5 degrees
Axis when Cylinder Power is greater than 0.750 to 1.500 diopters	\pm 3 degrees
Axis when Cylinder Power is greater than 1.500 diopters and above	± 2 degrees
Spherical Power of the near addition 0.00 to 4.00 diopters	± 0.12 diopter
Spherical Power of near addition above 4.00 diopters	± 0.18 diopter
Combined Vertical Imbalance	\pm 0.50 prism diopter
Lens thickness	± 0.3 millimeter
Base curve	± 0.25 diopter
Size of the lens	\pm 1.0 millimeter
Distance between lenses (DBL)	\pm 1.0 millimeter
'A,' & 'B"	\pm 1.0 millimeter
Distance between optical centers	± 1.0 millimeter
Segment height or width	\pm 0.5 millimeter
Decentration of bifocal or trifocal	± 1.0 millimeter
Right or left monocular distance P.D.	± 1.0 millimeter
Binocular distance P.D. or near P.D.	\pm 2.0 millimeters
Prism thinning	\pm 0.25 prism diopter

The EYEGLASSES PRACTICAL EXAMINATION is designed to test your ability to perform certain practical tasks related to the practice of opticianry.

This two-hour (120-minute) test may include but will not be limited to the following topics:

From a pair of mounted progressive addition lenses:

neutralize the distance portion of the lenses;

determine the add power;

measure the base curve;

quote and apply ANSI Z80.1-2005 standards;

identify the manufacturer's product name using the hidden identifying logo;

identify the manufacturer's recommended minimum height;

measure prism reference point height;

measure fitting cross height;

measure prism thinning;

analyze the lenses for unwanted vertical prism;

measure monocular P.D.

From a pair of mounted bifocal lenses:

neutralize the distance portion of the lenses;

determine the add power;

determine the meridian of highest absolute power;

measure the distance between prism reference points;

measure the base curve:

measure the distance between optical centers;

measure the "near P.D."

determine the frame "B" measurement;

measure the seg height;

identify the seg width;

analyze the lenses for unwanted vertical prism;

measure the lens center thickness.

From two pairs of mounted single vision lenses:

neutralize the distance portion of the lenses;

measure the distance between optical centers;

measure the lens center thickness;

analyze the lenses for possible vertical prism;

measure the base curve.

Given a spectacle frame and Rx for progressive lenses:

determine the monocular decentration;

determine the fitting cross drop/raise;

determine the prism reference height.

Given a spectacle frame and Rx for visible bifocals:

determine the distance decentration per lens;

determine the seg inset per lens;

determine the total inset per lens:

determine the seg drop/raise per lens;

determine the best minimum blank size.

Using the provided material/information:

calculate the distance compensated power using a vertex distance compensation chart;

calculate specialty lens power (TV, Reading, Computer, Piano, Intermediate, etc.);

calculate vertical imbalance;

determine bicentric grinding placement;

split prism for best cosmetic effect;

transpose a prescription;

calculate the "power" of the cylinder in an oblique meridian.